Wedelolactone-Loaded Micelles Ameliorate Doxorubicin-Induced Oxidative Injury in Podocytes by Improving Permeability and Bioavailability
Author(s) -
Liang Feng,
Zhiyong Li,
Long Wang,
Xinghua Li,
Yaping Chen,
Bing Yang,
Yang Dang,
Yuanpei Lian,
Xuefeng Hou,
Junhui Li,
Shumin Ding,
Xiaobin Jia
Publication year - 2019
Publication title -
frontiers in bioengineering and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.081
H-Index - 44
ISSN - 2296-4185
DOI - 10.3389/fbioe.2019.00333
Subject(s) - bioavailability , micelle , chemistry , pharmacology , drug delivery , in vivo , pharmacokinetics , zeta potential , permeability (electromagnetism) , solubility , biophysics , materials science , medicine , biochemistry , nanotechnology , nanoparticle , aqueous solution , membrane , biology , microbiology and biotechnology , organic chemistry
Wedelolactone (WED) is commonly used for the treatment of doxorubicin (DOX)-induced kidney damage, but its efficacy is limited by its poor solubility and bioavailability. In this study, we developed a novel delivery system of WED-loaded micelles (WED-M) with Solutol ® HS15 and lecithin at an optimized ratio of 7:3 to improve the poor permeability and bioavailability of WED and to enhance its efficacy. The spherically shaped WED-M (particle size: 160.5 ± 3.4 nm; zeta potential: −30.1 ± 0.9 mV; entrapment efficiency: 94.41 ± 1.64%; drug loading: 8.58 ± 0.25%; solubility: 1.89 ± 0.06 mg/ml) has continuous stability over 14 days and a sustained release profile. The permeability of WED-M in Caco-2 cells indicated a significant 1.61-fold higher Papp AP to BL ratio than WED alone. Additionally, pharmacokinetic evaluation of WED-M demonstrated that the bioavailability of WED was increased 2.78-fold. Both HE staining and transmission electron microscopy showed an obvious improvement of pathological damage in WED-M treatment. Moreover, WED-M significantly enhanced the ROS level in mice and MPC5 podocytes. We concluded that using this micelle delivery system for WED could improve its permeability and bioavailability to attenuate DOX-induced oxidative injury in podocytes. This study provided important information on the fact that the micelle delivery system, WED-M, showed a significant improvement of renal damage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom