
A method for MEG data that obtains linearly-constrained minimum-variance beamformer solution by minimum-norm least-squares method
Author(s) -
Toshiaki Imada
Publication year - 2010
Publication title -
frontiers in neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.499
H-Index - 102
eISSN - 1662-4548
pISSN - 1662-453X
DOI - 10.3389/conf.fnins.2010.06.00056
Subject(s) - minimum variance unbiased estimator , norm (philosophy) , covariance , computer science , mathematics , algorithm , artificial neural network , covariance matrix , statistics , mean squared error , artificial intelligence , political science , law