z-logo
open-access-imgOpen Access
Digital Circuit Design Utilizing Equation Solving over ‘Big’ Boolean Algebras
Author(s) -
Ali Muhammad Ali Rushdi,
Waleed Ahmad
Publication year - 2018
Publication title -
international journal of mathematical, engineering and management sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 10
ISSN - 2455-7749
DOI - 10.33889/ijmems.2018.3.4-029
Subject(s) - boolean algebra , mathematics , complete boolean algebra , boolean algebras canonically defined , stone's representation theorem for boolean algebras , discrete mathematics , boolean function , two element boolean algebra , combinatorics , algebra over a field , pure mathematics , algebra representation
A task frequently encountered in digital circuit design is the solution of a two-valued Boolean equation of the form h(X,Y,Z)=1, where h: B_2^(k+m+n)→ B_2 and X,Y, and Z are binary vectors of lengths k, m, and n, representing inputs, intermediary values, and outputs, respectively. The resultant of the suppression of the variables Y from this equation could be written in the form g(X,Z)=1 where g: B_2^(k+n)→ B_2. Typically, one needs to solve for Z in terms of X, and hence it is unavoidable to resort to ‘big’ Boolean algebras which are finite (atomic) Boolean algebras larger than the two-valued Boolean algebra. This is done by reinterpreting the aforementioned g(X,Z) as g(Z): B_(2^K)^n→ B_(2^K ), where B_(2^K ) is the free Boolean algebra FB(X_1,X_2…….X_k ), which has K= 2^k atoms, and 2^K elemnets. This paper describes how to unify many digital specifications into a single Boolean equation, suppress unwanted intermediary variables Y, and solve the equation g(Z)=1 for outputs Z (in terms of inputs X) in the absence of any information about Y. The paper uses a novel method for obtaining the parametric general solutions of the ‘big’ Boolean equation g(Z)=1. The parameters used do not belong to B_(2^K ) but they belong to the two-valued Boolean algebra B_2, also known as the switching algebra or propositional algebra. To achieve this, we have to use distinct independent parameters for each asserted atom in the Boole-Shannon expansion of g(Z). The concepts and methods introduced herein are demonsrated via several detailed examples, which cover the most prominent type among basic problems of digital circuit design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here