
An Approach for Solving Fuzzy Multi-Objective Linear Fractional Programming Problems
Author(s) -
Farhana Akond Pramy
Publication year - 2018
Publication title -
international journal of mathematical, engineering and management sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 10
ISSN - 2455-7749
DOI - 10.33889/ijmems.2018.3.3-020
Subject(s) - linear fractional programming , linear programming , simplex algorithm , mathematical optimization , fractional programming , mathematics , fuzzy logic , criss cross algorithm , chen , nonlinear programming , computer science , nonlinear system , artificial intelligence , paleontology , physics , quantum mechanics , biology
In this paper, an attempt has been taken to develop a method for solving fuzzy multi-objective linear fractional programming (FMOLFP) problem. Here, at first the FMOLFP problem is converted into (crisp) multi-objective linear fractional programming (MOLFP) problem using the graded mean integration representation (GMIR) method proposed by Chen and Hsieh. That is, all the fuzzy parameters of FMOLFP problem are converted into crisp values. Then the MOLFP problem is transformed into a single objective linear programming (LP) problem using a proposal given by Nuran Guzel. Finally the single objective LP problem is solved by regular simplex method which yields an efficient solution of the original FMOLFP problem. To show the efficiency of our proposed method, three numerical examples are illustrated and also for each example, a comparison is drawn between our proposed method and the respected existing method.