
Sneak Circuit Analysis: Lessons Learned from Near Miss Event
Author(s) -
James Li
Publication year - 2017
Publication title -
international journal of mathematical, engineering and management sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 10
ISSN - 2455-7749
DOI - 10.33889/ijmems.2017.2.1-003
Subject(s) - event (particle physics) , computer science , function (biology) , operator (biology) , path (computing) , monorail , engineering , programming language , physics , quantum mechanics , biochemistry , chemistry , structural engineering , repressor , evolutionary biology , gene , transcription factor , biology
Sneak Circuit Analysis is intended for critical applications which are essential to mission success and safety. A sneak condition will occur when a designed circuit inhibits a wanted function or results in an unwanted function. Sneak conditions originate from one of the four following scenarios: a sneak path resulting in a flow of electrical current along an unexpected route; a sneak timing that may cause the activation of some desired/designed functionality at an unexpected time; a sneak indication in monitoring functions that may result in an ambiguous or false display of system operating conditions; and lastly, a sneak label which may induce operator error due to inappropriate instruction. This paper introduces a near miss event that occurred in the Sao Paulo monorail which was caused by a sneak time condition. Root cause analysis and design modifications are also discussed in the paper.