Open Access
NUMERICAL WAVE FIELDS QUASISTATIC MODELING IN FLUID-FILLED POROELASTIC MEDIA
Author(s) -
Sergey Solovyev,
Vadim Lisitsa
Publication year - 2021
Publication title -
interèkspo geo-sibirʹ
Language(s) - English
Resource type - Journals
ISSN - 2618-981X
DOI - 10.33764/2618-981x-2021-2-2-298-311
Subject(s) - poromechanics , quasistatic process , biot number , solver , mathematical analysis , stiffness , mathematics , physics , mechanics , porous medium , mathematical optimization , geology , geotechnical engineering , porosity , quantum mechanics , thermodynamics
This paper presents a numerical algorithm to simulate low-frequency loading of fluid-filled poroelastic materials and estimate the effective frequency-dependent strain-stress relations for such media. The algorithm solves Biot equation in quasi-static state in the frequency space. As a result a system of linear algebraic equations have to be solved for each temporal frequency. We use the direct solver, based on the $LU$ decomposition to resolve the SLAE. According to the presented numerical examples the suggested algorithm allows reconstructing the stiffness tensor within a wide Frequency range.