z-logo
open-access-imgOpen Access
Explicit Solution for Cylindrical Heat Conduction
Author(s) -
Kaitlyn Parsons,
Tyler Reichanadter,
Andi Vicksman,
Harvey Segur
Publication year - 2016
Publication title -
american journal of undergraduate research
Language(s) - English
Resource type - Journals
eISSN - 2375-8732
pISSN - 1536-4585
DOI - 10.33697/ajur.2016.020
Subject(s) - heat equation , partial differential equation , poincaré–steklov operator , mathematics , boundary value problem , heat kernel , mathematical analysis , first order partial differential equation , separation of variables , thermal conduction , free boundary problem , parabolic partial differential equation , robin boundary condition , thermodynamics , physics
The heat equation is a partial differential equation that elegantly describes heat conduction or other diffusive processes. Primary methods for solving this equation require time-independent boundary conditions. In reality this assumption rarely has any validity. Therefore it is necessary to construct an analytical method by which to handle the heat equation with time-variant boundary conditions. This paper analyzes a physical system in which a solid brass cylinder experiences heat flow from the central axis to a heat sink along its outer rim. In particular, the partial differential equation is transformed such that its boundary conditions are zero which creates a forcing function in the transform PDE. This transformation constructs a Green’s function, which admits the use of variation of parameters to find the explicit solution. Experimental results verify the success of this analytical method.KEYWORDS: Heat Equation; Bessel-Fourier Decomposition; Cylindrical; Time-dependent Boundary Conditions; Orthogonality; Partial Differential Equation; Separation of Variables; Green’s Functions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom