z-logo
open-access-imgOpen Access
Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir
Author(s) -
Devi Fitrianah,
Wawan Gunawan,
Anggi Puspita Sari
Publication year - 2022
Publication title -
techno.com
Language(s) - English
Resource type - Journals
eISSN - 2356-2579
pISSN - 1412-2693
DOI - 10.33633/tc.v21i1.5348
Subject(s) - naive bayes classifier , forestry , biology , artificial intelligence , support vector machine , computer science , geography
Indonesia merupakan negara troips yang memiliki jumlah penduduk yang banyak sehingga mengakibatkan banyak sekali bencana alam yang harus diterima oleh Indonesia. Penelitian ini difokuskan pada bencana banjir yang nantinya dapat dimanfaatkan untuk mengatasi bencana kekeringan dengan cara penampungan air hujan. Selanjutnya berdasarkan luas wilayah dan jumlah penduduk yang ada, jika kita bandingkan dengan bencana banjir yang terjadi maka provinsi Jawa Barat yang seharusnya dapat perhatian lebih besar karena luas wilayah untuk masing-masing penduduk paling kecil jika dibandingkan dengan provinsi yang lain. Penelitian ini yang dilakukan menggunakan algoritma SVM, C5.0 dan Naive Bayes yang digunakan untuk melakukan prediksi banjir untuk membantu pencegahan kebencanaan agar tidak tejadi korban yang lebih banyak. algoritma SVM dan C5.0 memiliki nilai akurasi yang sama yaitu sebesar 93.75% sedangkan algoritma Naive Bayes memiliki nilai akurasi sebesar 81,25. Sehingga dapat disimpulkan bahwa algoritma ini lebih akurat dan efisien untuk digunakan untuk melakukan prediksi. Sedangkan untuk waktu pemrosesannya maka algoritma Naive Bayes bisa dikatakan lebih cepat jika dibandingkan algoritma SVM dan juga algoritma C5.0.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here