z-logo
open-access-imgOpen Access
Toxic Effects of Thioacetamide-Induced Femoral Damage in New Zealand White Rabbits by Activating the p38/ERK Signaling Pathway
Author(s) -
Linghong Cheng,
Y Li,
Yousheng Yao,
Xiaoli Jin,
Hongmei Ying,
Bin Xu,
Jian Xu
Publication year - 2022
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.934803
Subject(s) - thioacetamide , medicine , p38 mitogen activated protein kinases , endocrinology , new zealand white rabbit , chemistry , mapk/erk pathway , intraperitoneal injection , pharmacology , signal transduction , biology , biochemistry , paleontology
Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, thinned cortical bone and significantly decreased trabecular thickness of TAA-treated rabbits was observed, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here