z-logo
open-access-imgOpen Access
Effects of Mechanical Ventilation Versus Apnea on Bi-Ventricular Pressure-Volume Loop Recording
Author(s) -
Mads Dam Lyhne,
Christian Schmidt Mortensen,
James V. Hansen,
Simone Juel Dragsbæk,
Jens Erik NielsenKudsk,
Asger Andersen
Publication year - 2022
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.934787
Subject(s) - ventricle , medicine , cardiology , ejection fraction , apnea , stroke volume , mechanical ventilation , ventilation (architecture) , anesthesia , ventricular pressure , hemodynamics , heart failure , mechanical engineering , engineering
Respiration changes intrathoracic pressure and lung volumes in a cyclic manner, which affect cardiac function. Invasive ventricular pressure-volume (PV) loops can be recorded during ongoing mechanical ventilation or in transient apnea. No consensus exists considering ventilatory mode during PV loop recording. The objective of this study was to investigate the magnitude of any systematic difference of bi-ventricular PV loop variables recorded during mechanical ventilation versus apnea. PV loops were recorded simultaneously from the right ventricle and left ventricle in a closed chest porcine model during mechanical ventilation and in transient apnea (n=72). Variables were compared by regression analyses. Mechanical ventilation versus apnea affected regression coefficients for important PV variables including right ventricular stroke volume (1.22, 95% CI [1.08-1.36], p=0.003), right ventricular ejection fraction (0.90, 95% CI [0.81-1.00], p=0.043) and right ventricular arterial elastance (0.61, 95%CI [0.55-0.68], p<0.0001). Right ventricular pressures and volumes were parallelly shifted with Y-intercepts different from 0. Few left ventricular variables were affected, mainly first derivatives of pressure (dP/dt(max): 0.96, 95% CI [0.92-0.99], p=0.016, and dP/dt(min): 0.92, 95% CI [0.86-0.99], p=0.026), which might be due to decreased heart rate in apnea (Y-intercept -6.88, 95% CI [-12.22; -1.54], p=0.012). We conclude, that right ventricular stroke volume, ejection fraction and arterial elastance were mostly affected by apnea compared to mechanical ventilation. The results motivate future standardization of respiratory modality when measuring PV relationships.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here