
Study on the Pharmacological Character of an Insulin-Mimetic Small Molecular Compound of Vanadyl Trehalose
Author(s) -
Mohammad Umar,
Wei Qian,
Q Liu,
Shuguang Xing,
X Li,
Xiaoxiao Yang,
Yunge Fan,
Duoming Ma,
Peng Jiang,
M Li
Publication year - 2020
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.934370
Subject(s) - glutathione , gclc , glutathione synthetase , glutathione reductase , trehalose , chemistry , oxidative stress , biochemistry , antioxidant , glutathione peroxidase , gpx4 , medicine , endocrinology , biology , enzyme
To investigate the effect of vanadyl trehalose (VT) on oxidative stress and reduced glutathione/glutathione-S-transferase (GSH/GSTs) pathway gene expression in mouse gastrointestinal tract, as well as the protective effects of vitamin C (VC) and reduced glutathione (GSH). Thirty male Kunming mice were randomly divided into five groups: control group (group A), VT group (group B), VC + VT group (group C), GSH + VT group (group D) and VC + GSH + VT group (group E). The content of reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) activity and the expressions of glutamate-cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), regulated through glutathione reductase (GSR) and glutathione-S-transferase pi (GSTpi) in stomach and duodenum in vanadyl trehalose treated group were lower than those in group A (P<0.05). The C, D, E group can significantly improve the above indicators, but those only in the stomach in E group reached the level of the control group. Vanadyl trehalose (VT) was able to cause oxidative stress damage to the gastrointestinal tract of mice, which affects GSH content and GSH-Px activity and interferes with the normal expression of GSH/GSTs pathway. Exogenous vitamin C, reduced glutathione and the combination of the two could play a specific role in antioxidant protection and reduce the toxicity of vanadyl trehalose.