z-logo
open-access-imgOpen Access
Thrombospondins Differentially Regulate Proteins Involved in Arterial Remodeling
Author(s) -
Mohammed Kassem,
Alex Helkin,
Kristopher G. Maier,
Vivian Gahtan
Publication year - 2019
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.934148
Subject(s) - thrombospondins , downregulation and upregulation , matricellular protein , biology , platelet derived growth factor receptor , microbiology and biotechnology , cell culture , thrombospondin , growth factor , biochemistry , extracellular matrix , genetics , receptor , metalloproteinase , enzyme , gene
Thrombospondins (TSPs) are matricellular glycoproteins expressed in response to vascular injury. TSP-1 and TSP-2 are promotors of arterial remodeling while TSP-5 is believed to be protective. The current study assessed the differential effect of TSPs on protein expression in vascular smooth muscle cells (VSMCs). We hypothesized that TSP-1, TSP-2 and TSP-5 would regulate VSMC proteins involved in arterial remodeling. Human VSMCs were exposed to TSP-1, -2, -5 or serum free media (24 hours). Cell lysates were used to assess the targets TSP-1, TSP-2, TSP-5 and CD44), while the culture media was used to detect TGF-β1, PDGF-BB, ANGPTL-4 and IL-8. Statistical analysis was performed by t-test and p< 0.05 was considered significant. All TSPs increased their own expression and TSP-5 increased TSP-2. TSP-1 and TSP-2 increased production of ANGPTL-4 and PDGF-BB, while TSP-5 only increased ANGPTL-4. TSP-1 increased exclusively TGF-β1 and CD44 production. TSP-2 increased TSP-1 expression. All TSPs decreased IL-8. The findings suggest that TSP-1 and TSP-2 may promote vascular remodeling, in part, by increasing ANGPTL-4, PDGF-BB and their own expression. TSP-5 did not upregulate the inflammatory mediators TSP-1, PDGF-BB or TGF-β1, but upregulated its own expression, which could be a protective mechanism against the response to vascular injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here