z-logo
open-access-imgOpen Access
Cerebrovascular Dynamics During Continuous Motor Task
Author(s) -
Martin Müller,
Mareike Österreich
Publication year - 2019
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.934147
Subject(s) - cerebral autoregulation , cardiology , cerebral blood flow , medicine , blood flow , hemodynamics , anesthesia , blood pressure , physics , autoregulation
We investigated the cerebral autoregulation (CA) dynamics parameter phase and gain change when exposed to a longlasting motor task. 25 healthy subjects (mean age ± SE, 38±2.6 years, 13 females) underwent simultaneous recordings of spontaneous fluctuations in blood pressure (BP), cerebral blood flow velocity (CBFV), and end-tidal CO2 (ETCO2) over 5 min of rest followed by 5 min of left elbow flexion at a frequency of 1 Hz. Tansfer function gain and phase between BP and CBFV were assessed in the frequency ranges of very low frequencies (VLF, 0.02-0.07 Hz), low frequencies (LF, 0.07-0.15), and high frequencies (HF, >0.15). CBFV increased on both sides rapidly to maintain an elevated steady state until movement stopped. Cerebrovascular resistance fell on the right side (rest 1.35±0.06, movement 1.28±0.06, p<0.01), LF gain decreased from baseline (right side 0.97±0.07 %/mm Hg, left 1.01±0.09) to movement epoch (right 0.73±0.08, left 0.76±0.06, p≤0.01). VLF phase decreased from baseline (right 1.03±0.05 radians, left 1.10±0.06) to the movement epoch (right 0.81±0.07, left 0.82±0.10, p≤0.05). CA regulates continuous motor efforts by changes in resistance, gain and phase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here