z-logo
open-access-imgOpen Access
White adipose tissue: storage and effector site for environmental pollutants.
Author(s) -
Dana Müllerová,
Jan Kopecký
Publication year - 2007
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.931022
Subject(s) - adipose tissue , white adipose tissue , chemistry , estrogen receptor , endocrinology , medicine , biology , cancer , breast cancer
White adipose tissue (WAT) represents a reservoir of lipophilic environmental pollutants, especially of those which are resistant to biological and chemical degradation - so-called persistent organic pollutants (POPs). Large amounts of different congeners and isomers of these compounds exhibit a variety of adverse biological effects. Interactions among different classes of compounds, frequently with opposing effects, complicate hazard evaluation and risk assessment. WAT is the key organ for energy homeostasis and it also releases metabolites into the circulation and adipokines with systemic effects on insulin sensitivity and fuel partitioning in muscles and other tissues. Its beneficial role is lost in obesity when excessive accumulation of WAT contributes to severe diseases, such as diabetes. POPs may crossroad or modulate the effect of endogenous ligands of nuclear transcription factors, participating in differentiation, metabolism and the secretory function of adipocytes. These mechanisms include, most importantly: i) endocrine disrupting potency of POPs mixtures on androgen, estrogen or thyroid hormone metabolism/functions in WAT, ii) interference of dioxin-like chemicals with retinoic acid homeostasis, where impact on retinoid receptors is expected, and iii) interaction with transcriptional activity of peroxisome proliferator-activated receptors is likely. Thus, the accumulation and action of POPs in WAT represents a unitary mechanism explaining, at least in part, the effects of POPs in the whole organism. By modulating WAT differentiation, metabolism and function, the POPs could affect not only the physiological role of WAT, but they may also influence the development of obesity-associated diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here