z-logo
open-access-imgOpen Access
Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations
Author(s) -
Paul Jedlicka,
Backus Kh
Publication year - 2006
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.930764
Subject(s) - neuroscience , inhibitory postsynaptic potential , depolarization , gabaergic , neurotransmission , gabaa receptor , chemistry , membrane potential , premovement neuronal activity , biophysics , nerve net , intracellular , biology , receptor , biochemistry
Oscillatory network activity arises from interactions between synaptic and intrinsic membrane properties of neurons. In this review, we summarize general mechanisms of synchronous neuronal oscillations. In addition, we focus on recent experimental and computational studies which suggest that activity-dependent changes of ionic environment can affect both the synaptic and intrinsic neuronal properties and influence the network behavior. GABA(A) receptor (GABA(A)R)-mediated signaling, that is based on Cl(-) and HCO(3)(-) permeability, is thought to be important for the oscillogenesis and synchronization in cortical networks. A remarkable feature of GABAergic synapses is that prolonged GABA(A)R activation may lead to switching from a hyperpolarizing to a depolarizing response. This is partly due to a positive shift of the GABA(A) R reversal potential (E(GABA)) that is generated by GABA-induced Cl(-) accumulation in neurons. Recent studies suggest that activity-dependent E(GABA) changes may have important implications for the mechanisms of gamma oscillations and seizure-like discharges. Thus, a better understanding of the impact of intracellular Cl(-) dynamics on network behavior may provide insights into the mechanisms of physiological and pathological brain rhythms. Combination of experiments and simulations is a promising approach for elucidating which properties of the time-varying ionic environment can shape the dynamics of a given circuit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here