z-logo
open-access-imgOpen Access
The effects of short-term training on platelet functions and total antioxidant capacity in rats
Author(s) -
Hakan Fıçıcılar,
Zergeroglu Am,
Gülfem Ersöz,
Ali Erdoğan,
Semir Özdemir,
Demet Tekin
Publication year - 2006
Publication title -
physiological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.647
H-Index - 70
eISSN - 1802-9973
pISSN - 0862-8408
DOI - 10.33549/physiolres.930756
Subject(s) - platelet , antioxidant , chemistry , antioxidant capacity , platelet rich plasma , medicine , endocrinology , biochemistry
The purpose of the present study was to investigate the effect of short-term endurance training on plasma total antioxidant status (TAS) and on in vitro platelet aggregation and ATP release. Blood samples were collected from the abdominal aorta of rats following short-term treadmill exercise (25 m/min, 0 % grade, 30 min) for three consecutive days, as well as in non-exercised control group. Platelet aggregation and platelet ATP release were evaluated by impedance and bioluminescence techniques, respectively. Plasma TAS was measured spectrophotometrically. Plasma TAS was higher and ADP-induced platelet ATP release was lower in the short-term training group with respect to the control group (p<0.001). Significant negative correlation (r = -0.56, p<0.05) was found between plasma TAS and ADP-induced platelet ATP release. Neither ADP- and collagen-induced maximum aggregation rate nor collagen-induced platelet ATP release were significantly different between the groups. According to these results, short-term training caused an alteration in platelet functions limited to the secretion response, which may be related to the oxidant/antioxidant balance changes favoring the antioxidants. The improved plasma total antioxidant capacity was possibly sufficient to prevent exercise-induced oxidative damage, and the adaptive response of platelets might be associated with enhanced antioxidant status.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here