z-logo
open-access-imgOpen Access
Efficient Induction of Dopaminergic Neurons from Embryonic Stem Cells for Application to Parkinson's Disease
Author(s) -
Dong Wook Kim
Publication year - 2004
Publication title -
yonsei medical journal/yonsei medical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.702
H-Index - 63
eISSN - 1976-2437
pISSN - 0513-5796
DOI - 10.3349/ymj.2004.45.suppl.23
Subject(s) - dopaminergic , embryonic stem cell , stem cell , ascorbic acid , biology , tyrosine hydroxylase , microbiology and biotechnology , stromal cell , transplantation , context (archaeology) , dopamine , neuron , cellular differentiation , neuroscience , medicine , cancer research , gene , genetics , paleontology , food science
For cell replacement therapy of neurodegenerative diseases such as Parkinson's disease (PD), methods for efficiently generating midbrain dopaminergic (DA) neurons from embryonic stem (ES) cells have been investigated. Two aspects of DA neuron generation are considered: genetic modification and manipulation of culture conditions. A transcription factor known as critical for development of DA neurons, Nurr1, was introduced into ES cells to see how they facilitate the generation of DA neurons from ES cells. Also, two culture procedures, the 5-stage method and stromal cell-derived inducing activity (SDIA) method, were used for ES cell differentiation. Using the 5-stage method, we and others previously demonstrated that Nurr1-overexpressing ES cells, under treatment of signaling molecules such as SHH and FGF8 followed by treatment of ascorbic acid, can differentiate into DA neurons with a high efficiency (> 60% of TH+/Tuj1+ neurons). Furthermore, using the SDIA method with treatment of signaling molecules, we found that Nurr1-overexpressing ES cells can differentiate to DA neurons with the highest efficiency ever reported (approximately 90% of TH+/Tuj1+ neurons). Importantly, our semi-quantitative and real-time PCR analyses demonstrate that all known DA marker genes (e.g., TH, AADC and DAT) were up-regulated in Nurr1- overexpressing ES cells when compared to the na ve ES cells. These cells produced increased dopamine compared to na ve D3 cells after differentiation. In the in vivo context after transplantation, the genetically modified ES cells also showed the highly increased dopaminergic neuronal phenotypes. Thus, the combination of genetic engineering and appropriate culture conditions provides a useful tool to generate a good cell source from ES cells for cell replacement therapy of degenerative diseases such as PD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here