z-logo
open-access-imgOpen Access
Karakteristik Matriks sebagai Daerah Asal Suatu Logaritma
Author(s) -
Era Dewi Kartika
Publication year - 2018
Publication title -
matematika dan pembelajaran
Language(s) - English
Resource type - Journals
eISSN - 2621-3176
pISSN - 2303-0992
DOI - 10.33477/mp.v6i1.443
Subject(s) - physics , geology
Abstrak Rumus umum fungsi logaritma asli dengan daerah asal suatu matriks adalah ln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) dengan T adalah matriks non-singular dimana A=TJ_A T^(-1), S_((J_A ) )adalah sebarang matriks yang komutatif dengan J_A, J_A adalah matriks Jordan dari matriks A, λ_i adalah nilai karakteristik dari pembagi elementer A, I adalah matriks identitas dan H^((p)) adalah matriks berukuran p×p yang mempunyai 1 sebagai anggota pada superdiagonal pertama dan 0 untuk lainnya. Karakteristik matriks A sebagai daerah asal suatu fungsi logaritma adalah matriks persegi yang non-singular dengan nilai-nilai karakteristik real positif Kata Kunci: matriks, daerah asal, logaritma asli Abstract The general formula of the natural logarithm function with domain of a matrix is ln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) with T is the non-singular matrix which A=TJ_A T^(-1), S_((J_A ) ) is any commutative matrix with J_A, J_Ais the Jordan matrix of the matrix A, λ_i is the characteristic value of the elementary divider A, I is the identity matrix and H^((p)) is a square matrix which has 1 as a member of the first superdiagonal and 0 for other. The characteristic of matrix A as domain of a natural logarithm function is a non-singular square matrix with real positive characteristic values Keywords: matrix, domain, natural logarithm

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom