
Sistema baseado na lógica fuzzy para diagnóstico da qualidade da água para o cultivo de tilápia-do-Nilo
Author(s) -
Sergio Luís de Castro,
Daniel Sá Freire Lamarca,
Thiago Lorente Kraetzer,
Glauber da Rocha Balthazar,
Fernando de Lima Caneppele
Publication year - 2022
Publication title -
research, society and development
Language(s) - Portuguese
Resource type - Journals
ISSN - 2525-3409
DOI - 10.33448/rsd-v11i4.26933
Subject(s) - humanities , physics , philosophy , computer science , biology
A aquicultura caracteriza-se como um sistema de produção de organismos (plantas e animais) em ambiente aquático controlado, sendo geralmente aplicada de forma sustentável nas fazendas por apresentar um rápido retorno econômico na produção de alimentos. Informações precisas e rápidas sobre a qualidade da água são fundamentais para garantir tanto a sobrevivência de peixes, quanto sua correta conversão alimentar. Nesse contexto, o objetivo deste artigo foi desenvolver um sistema de apoio à decisão, baseado na teoria dos conjuntos fuzzy, para a avaliação das condições de qualidade de água e sua influência na ambiência de tilápias do Nilo. A execução deste trabalho foi dividida em três etapas: a) levantamento bibliográfico dos parâmetros de qualidade de água, considerando sua influência no desempenho produtivo dos peixes; b) utilização dos resultados da fase anterior, somado a contribuições dos especialistas, para o desenvolvimento de um sistema de inferência fuzzy para diagnóstico da qualidade de água nos tanques de criação; c) Utilização do sistema fuzzy elaborado previamente para análise de um banco de dados representante de um tanque comercial de criação de tilápia-do-nilo. Os resultados obtidos mostraram-se adequados para a classificação da qualidade da água para tilápias-do-nilo, utilizando o processo de modelagem fuzzy. As classificações determinadas pelo modelo fuzzy assemelham-se com a classificação dada pelo modelo booleano. Contudo, as divergências encontradas entre os modelos mostram-se relevantes à medida que pequenas oscilações observadas nas variáveis de entrada (temperatura e pH) não indicam alterações bruscas na variável de saída do modelo (qualidade da água), no caso do modelo fuzzy.