z-logo
open-access-imgOpen Access
Effect of a diamond-like carbon film on the mechanical and surface properties of microwave-cured polymethylmethacrylate
Author(s) -
Pâmela Lopes Pedro da Silva,
George Azevedo Lemos,
Frederico Barbosa de Sousa,
Argemiro Soares da Silva Sobrinho,
José Renato Cavalcanti Queiroz,
André Ulisses Dantas Batista
Publication year - 2022
Publication title -
research, society and development
Language(s) - English
Resource type - Journals
ISSN - 2525-3409
DOI - 10.33448/rsd-v11i3.26271
Subject(s) - materials science , surface roughness , flexural strength , composite material , coating , chemical vapor deposition , surface finish , diamond like carbon , diamond , thin film , nanotechnology
Microwave-cured polymethylmethacrylate (MCPM) are commonly used in dentistry due low cost, transparency and easy handling. However, do not have a long useful life, due to their chemical fragility and low hardness and wear resistance. Aim: Assessing the effect of a diamond-like carbon (DLC) film coating on the mechanical and surface properties of MCPM. Methodology: The MCPM samples were divided into control (Gc) and treatment (Gt) groups, and were subjected to flexural strength (n=18), wear resistance (n=18) tests, and to topography and surface roughness (Ra) analysis by three-dimensional optical profilometry (n=18). The films were deposited by plasma-enhanced chemical vapor deposition. Differences between groups were assessed by the Mann-Whitney and t tests using a 5% significance level (p<0.05). Results: The Gt had higher surface roughness (0.108 ± 0.01µm) than the Gc (0.038 ± 0.01µm), with p<0.0001. No significant difference (p=0.606) in flexural strength was found between Gt (103.3 MPa) and Gc (105.3 MPa). No significant difference was found between the groups in terms of straightness (Gt: 0.006 ± 0.0059 mm and Gc 0.005 ± 0.0052mm, p=0.774) or indentation depth (Gt: 29.974 ± 8.69µm and Gc: 28.169 ± 5.71µm, p=0.610) after the wear test. Conclusion: Coating the MCPM surface with a DLC film affected the surface roughness, with no effects on flexural strength and wear resistance. New studies are suggested to better understand these effects, perhaps with variations in the deposition parameters such as coating thickness or on the sp3/sp2 ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here