
Previsão do preço do café arábica: uma aplicação de redes neurais CNN-BLSTM
Author(s) -
José Airton Azevedo dos Santos
Publication year - 2022
Publication title -
research, society and development
Language(s) - Portuguese
Resource type - Journals
ISSN - 2525-3409
DOI - 10.33448/rsd-v11i3.26101
Subject(s) - computer science
Este trabalho propõe a utilização da rede neural CNN-BLSTM como ferramenta de previsão do preço do café arábica. A base de dados disponibilizada pelo CEPEA (Centro de Estudos Avançados em Economia Aplicada) apresenta uma série histórica, do preço do café arábica, no período entre janeiro de 1997 e dezembro de 2021. Modelos de previsão baseados em redes neurais LSTM, BLSTM, CNN e CNN-BLSTM foram implementados, na linguagem Python, utilizando o framework Keras. Resultados obtidos, dos quatro modelos, foram comparados por meio das métricas MAE, RMSE e MAPE. Verificou-se, para um horizonte de 6 meses, que o modelo CNN-BLSTM apresentou melhor desempenho.