
Potential utilization of glycerol as crosslinker in starch films for application in Regenerative Dentistry
Author(s) -
Simone Maria De Souza Rodrigues,
Mariana Fornazier,
Denildo de Magalhães,
Reinaldo Ruggiero
Publication year - 2021
Publication title -
research, society and development
Language(s) - English
Resource type - Journals
ISSN - 2525-3409
DOI - 10.33448/rsd-v10i16.23640
Subject(s) - glycerol , starch , plasticizer , materials science , context (archaeology) , swelling , chemical engineering , degradation (telecommunications) , polymer , biodegradable polymer , biomedical engineering , chemistry , composite material , food science , organic chemistry , computer science , medicine , paleontology , telecommunications , engineering , biology
Periodontal disease results in damage to dental insertion apparatus. Regenerative procedures are proposed to replace lost structures in the context of guided tissue regeneration (GTR), guided bone regeneration (GBR) techniques and frequently associate bone substitutes with physical barriers aiming at greater longevity and improvement of aesthetic pattern. This study evaluates the possibility of using glycerol as a starch films modifying agent, acting as a cross-linking agent, without compromising its plasticizing effect. Biodegradable cassava starch films were prepared incorporating glycerol at concentrations of 0, 15, 20, 30 and 40% aiming application at dental regenerative procedures. The characterization of films by microscopy (SEM), thermal analysis (DSC), spectroscopic (UV / Vis., FTIR, XRD), mechanical (Traction), and analysis of protein swelling, degradation and diffusion and physiological temperature) showed that the incorporation of glycerol in up to 20% attributed to the films a plasticizer character and in higher concentrations, conferred a greater interaction of glycerol (crosslinking) with the starch chains and a degradation time that allows the physical barrier in RTG and ROG. The films presented mechanical resistance, malleability and permissiveness to protein diffusion in the in vitro assays, which meet the current attributes that guide the use of these resources in biomaterials.