z-logo
open-access-imgOpen Access
Identifikasi Citra Digital Kura-Kura Sumatera Dengan Perbandingan Ekstraksi Fitur GLCM Dan GLRLM Berbasis Web
Author(s) -
Julia Purnama Sari,
Aan Erlansari,
Endina Putri Purwandari
Publication year - 2021
Publication title -
pseudocode
Language(s) - Uncategorized
Resource type - Journals
eISSN - 2655-1845
pISSN - 2355-5920
DOI - 10.33369/pseudocode.8.1.66-75
Subject(s) - computer science
Kura-kura merupakan hewan yang sangat mudah dikenali karena mempunyai bentuk tubuh yang khas. Ciri khas yang dimiliki oleh kura-kura adalah adanya karapaks yang sering disebut dengan cangkang. Dalam mengidentifikasi kura-kura tidak bisa sembarangan, dibutuhkan seorang pakar yang benar-benar paham dengan spesies tersebut. Identifikasi keanekaragaman spesies kura-kura sumatera melalui pengolahan citra digital ini menggunakan metode ekstraksi fitur tekstur  berbasis website.  Salah satu cara mengidentifikasi jenis kura-kura yaitu dengan menggunakan sistem identifikasi secara otomatis berbasis pemrosesan citra digital. Pada penelitian ini dilakukan perbandingan dua ekstraksi ciri yaitu Gray Level Co-Occurrence Matrix (GLCM) dan Gray Level Run Length Matrix (GLRLM). Ekstraksi ciri GLCM dan GLRLM yang dilakukan pada penelitian ini menggunakan sudut 0°, 45°, 90°, 135°. Hasil Penelitian menunjukkan bahwa hasil akurasi identifikasi dengan menggunakan ekstraksi ciri GLRLM lebih baik dibandingkan GLCM. Hasil Akurasi tertinggi pada GLRLM 79,5% sementara dengan GLCM menghasilkan akurasi sebesar 75%.Kata Kunci: Identifikasi, Kura-kura, Karapaks, Gray Level Run length Matrix, Gray Level Co-Occurrence Matrix.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom