z-logo
open-access-imgOpen Access
Analisa Hasil Pengelompokan Wilayah Kejadian Non-Kebakaran Menggunakan Agglomerative Hierachical Clustering di Semarang
Author(s) -
Desy Exasanti,
Arief Jananto
Publication year - 2021
Publication title -
jurnal tekno kompak
Language(s) - Uncategorized
Resource type - Journals
eISSN - 2656-3525
pISSN - 1412-9663
DOI - 10.33365/jtk.v15i2.1166
Subject(s) - physics , cluster analysis , artificial intelligence , computer science
Abstrak−Klasterisasi merupakan metode pengelompokan dari data yang sudah diketahui label kelasnya untuk menemukan klaster baru dari hasil observasi. Dalam klasterisasi banyak metode yaitu metode terpusat, hirarki, kepadatan dan berbasis kisi, namun dalam penelitian yang dilakukan ini dipilih metode berbasis hirarki. Metode hirarki ini bekerja melakukan pengelompokan objek dengan membentuk hirarki klaster namun bukan berarti selalu digambarkan dengan hirarki dalam organsasi. Dipilihnya Agglomerative Hierarchical Clustering dimana merupakan jenis dari bawah ke atas atau biasa disebut (bottom-up) dalam metode ini objek yang akan diuji dianggap sebagai objek tunggal sebagai klaster dan lalu dilakukan iterasi untuk menemukan klaster-klaster yang lebih besar. Data yang akan digunakan adalah data non-kebakaran pada Dinas Pemadam Kebakaran Kota Semarang ynng mana akan dilakukan pengelompokan wilayah penanganan non-kebakaran. Dinas Pemadam Kebakaran melakukan penanganan bukan hanya kebakaran saja namun ada banyak hal yang sebenarnya dapat ditangani oleh petugas pemadam kebakaran, kejadian non-kebakaran ada beberapa seperti evakuasi reptil, evakuasi kucing, penyelamatan korban kecelakaan dan lain sebagainya. Dari data non-kebakaran dari 16 kecamatan di Kota Semarang pada tahun 2019 akan dilakukan uji menggunakan tiga algoritma yaitu Single Lingkage, Average Linkage dan Complete Linkage . Adapun dari algoritma Single Linkage dilakukan prosedur pemusatan dari jarak terkecil antar objek data, algoritma Average Linkage dilakukan prosedur dari jarak rata-rata objek data, sedangkan jika algoritma Complete Linkage dilakukan prosedur pemusatan dari jarak yang terbesar. Implementasi dan visualiasi dari data uji coba yang dilakukan di penilitian ini menggunakan tools WEKA 3.8.4, Wakaito Environment Analysis for Knowledge atau yang biasa dikenal dengan WEKA ini merupakan software yang menggunakan bahasa pemrograman java. Dari dataset 380 data diambil sampel 100 data untuk diuji mengunakan WEKA menggunakan metode perhtungan jarak Manhattan Distance dengan 3 cluster. Hasil dari data uji coba dapat divisualisasikan dengan visualisasi dendogram pada fitur visualize tree  dan jika dilakukan visualisasi dalam bentuk grafik dapat dilakukan menggunakan fitur visualize clusters assignment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here