z-logo
open-access-imgOpen Access
On the inverse limits of T0-Alexandroff spaces
Author(s) -
P. Bilski
Publication year - 2017
Publication title -
glasnik matematicki
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 17
eISSN - 1846-7989
pISSN - 0017-095X
DOI - 10.3336/gm.52.2.01
Subject(s) - mathematics , inverse , pure mathematics , geometry
We show that if X is a locally compact, paracompact and Hausdorff space, then X can be realised as the subspace of all maximal points of the inverse limit of an inverse system of partial orders with an appropriate topology (equivalently T0-Alexandroff spaces). Then, the space X is homeomorphic to a deformation retract of that limit. Moreover, we extend results obtained by Clader and Thibault and show that if K is a simplicial complex, then its realisation |K| can be obtained as the subspace of all maximals of the limit of an inverse system of T0-Alexandroff spaces such that each of them is weakly homotopy equivalent to |K|. Moreover, if K is locally-finite-dimensional and |K| is considered with the metric topology, then this inverse system can be replaced by an inverse sequence

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom