z-logo
open-access-imgOpen Access
On zeros of some analytic functions related to the Riemann zeta-function
Author(s) -
Antanas Laurinčikas
Publication year - 2013
Publication title -
glasnik matematicki
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 17
eISSN - 1846-7989
pISSN - 0017-095X
DOI - 10.3336/gm.48.1.05
Subject(s) - mathematics , riemann zeta function , riemann hypothesis , analytic function , riemann xi function , mathematical analysis , z function , particular values of riemann zeta function , function (biology) , pure mathematics , arithmetic zeta function , prime zeta function , evolutionary biology , biology
For some classes of functions F, we obtain that the function F(ζ(s)), where ζ(s) denotes the Riemann zeta-function, has infinitely many zeros in the strip 1/2 < Re s < 1. For example, this is true for the functions sin ζ (s) and cos ζ (s)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom