Cyclic subgroups of order 4 in finite 2-groups
Author(s) -
Zvonimir Janko
Publication year - 2007
Publication title -
glasnik matematicki
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 17
eISSN - 1846-7989
pISSN - 0017-095X
DOI - 10.3336/gm.42.2.08
Subject(s) - mathematics , order (exchange) , cyclic group , locally finite group , pure mathematics , combinatorics , business , abelian group , finance
We determine completely the structure of finite 2-groups which possess exactly six cyclic subgroups of order 4. This is an exceptional case because in a finite 2-group is the number of cyclic subgroups of a given order 2n (n ≥ 2 fixed) divisible by 4 in most cases and this solves a part of a problem stated by Berkovich. In addition, we show that if in a finite 2-group G all cyclic subgroups of order $4$ are conjugate, then G is cyclic or dihedral. This solves a problem stated by Berkovich
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom