z-logo
open-access-imgOpen Access
Pendeteksian Susut Daya Pelanggan Dalam Upaya Meningkatkan Efisiensi Penggunaan Energi
Author(s) -
Yessy Asri,
Dwina Kuswardani,
Efy Yosrita,
Ferdinand Hendrik Wullur
Publication year - 2020
Publication title -
petir/petir (jakarta. online)
Language(s) - Slovenian
Resource type - Journals
eISSN - 2655-5018
pISSN - 1978-9262
DOI - 10.33322/petir.v13i2.1067
Subject(s) - mathematics , physics , humanities , computer science , operating system , philosophy
Automatic Meter Reading (AMR) adalah sistem pembacaan atau pengambilan data hasil pengukuran energi listrik pada konsumen, baik secara lokal maupun jarak jauh. Salah satu fungsi sistem ini adalah untuk menghitung kerugian atau penyusutan distribusi. Salah satu masalah yang dihadapi oleh PLN adalah penyusutan non-teknis yang tinggi dari pelanggan AMR potensial karena kesalahan pemasangan dan pemeliharaan serta tindakan tidak jujur ​​yang dilakukan oleh beberapa konsumen, ini memiliki pengaruh besar pada kerugian daya listrik. PT. PLN Disjaya saat ini memiliki 34.000 pelanggan dan menghadapi kesulitan dalam memilih pelanggan mana yang harus diperiksa terlebih dahulu, karena jumlah personel di lapangan sekitar 5 orang, sehingga petugas yang melakukan sweep di lapangan hanya dapat menemukan sedikit kerusakan. Ini memotivasi penulis untuk melakukan pengelompokan yang dapat digunakan untuk memfasilitasi analisis dan evaluasi data. Metode K-Means digunakan dalam penelitian ini untuk mengelompokkan data berdasarkan riwayat penggunaan daya listrik dan untuk menentukan jumlah kelompok yang paling optimal digunakan metode Davies-Bouldin Index (DBI). Berdasarkan hasil pengujian dengan 2-6 set cluster, hasil set cluster yang paling optimal adalah set cluster 4 karena memiliki nilai DBI terkecil, yaitu 0,893, yang berarti set cluster 4 memiliki kepadatan masing-masing objek dengan centroid terbaik dan jarak antar cluster juga dipisahkan dengan baik. Cluster 1 memiliki 12 anggota, klaster 2: 54 anggota, klaster 3: 34 anggota dan klaster 4: 3 anggota. Himpunan 4 cluster memiliki kinerja terbaik dalam pengelompokan data tentang penggunaan daya historis pelanggan AMR (Automatic Meter Reading) di kelas bisnis, setiap titik pusat atau titik pusat dari masing-masing cluster digunakan sebagai atribut dan nilai penggunaan daya pelanggan AMR bagan bisnis di PT. PLN (Persero) Distribusi Jakarta Raya. Tahap pengujian yang diuji adalah data 3 pelanggan yang dikategorikan sebagai pelanggan dengan daya listrik penggunaan tidak normal. Pengujiannya adalah, dengan menentukan jarak dari masing-masing objek pengujian data ke setiap centroid dalam kelompok 4 set. Diharapkan bahwa sistem ini dapat digunakan oleh petugas karyawan di sektor Distribusi, Efisiensi, Pengukuran dan Kualitas Sub Sistem Sistem Distribusi untuk menetapkan target operasi P2TL di kantor distribusi PT. PLN (Pesero) Distribusi Jakarta Rayatau kehilangan listrik adalah salah satu hasil dari penerapan sistem pembacaan daya listrik historis, AMR (Automatic Meter Reading). Salah satu jenis kerugian yang memberi dampak besar terhadap kerugian listrik adalah kerugian Non-Teknis. Saat ini untuk mendeteksi kerugian itu sendiri, petugas masih memeriksa data secara langsung dari setiap pelanggan yang masuk untuk menganalisis dan mengevaluasi data. Terkait hal ini, diperlukan suatu sistem untuk memudahkan analisis dan evaluasi data. Metode K-Means digunakan dalam penelitian ini untuk mengelompokkan data berdasarkan riwayat penggunaan daya listrik dan untuk menentukan jumlah kelompok yang paling optimal digunakan metode Davies-Bouldin Index (DBI). Berdasarkan hasil pengujian aplikasi dengan 2-6 set cluster, hasil set cluster yang paling optimal adalah set cluster 4 karena memiliki nilai DBI terkecil, yaitu 0,893, yang berarti set cluster 4 memiliki kepadatan setiap objek dengan centroid terbaik dan jarak antara cluster juga dipisahkan dengan baik. Cluster 1 memiliki 12 anggota, klaster 2: 54 anggota, klaster 3: 34 anggota dan klaster 4: 3 anggota. Himpunan 4 cluster memiliki kinerja terbaik dalam pengelompokan data tentang penggunaan daya historis pelanggan AMR (Automatic Meter Reading) di kelas bisnis, setiap titik pusat atau titik pusat dari masing-masing cluster digunakan sebagai atribut dan nilai penggunaan daya pelanggan AMR grafik bisnis di PT. PLN (Persero) Distribusi Jakarta Raya. Tahap pengujian yang diuji adalah data 3 pelanggan yang dikategorikan sebagai pelanggan dengan daya listrik penggunaan tidak normal. Pengujiannya adalah, dengan menentukan jarak dari masing-masing objek pengujian data ke setiap centroid dalam kelompok 4 set. Diharapkan aplikasi ini dapat digunakan oleh petugas karyawan di sektor Distribusi, Efisiensi, Pengukuran dan Kualitas Sub Sistem Sistem Distribusi untuk menetapkan target operasi P2TL di kantor distribusi PT. PLN (Pesero) Distribusi Jakarta Raya.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here