z-logo
open-access-imgOpen Access
Structural Properties Analysis of Mg-β-TCP by X-ray Powder Diffraction with the Rietveld Refinement
Publication year - 2020
Publication title -
letters in applied nanobioscience
Language(s) - English
Resource type - Journals
ISSN - 2284-6808
DOI - 10.33263/lianbs94.15621568
Subject(s) - rietveld refinement , apatite , calcination , powder diffraction , magnesium , stoichiometry , materials science , calcium , crystallography , hydrothermal synthesis , x ray crystallography , crystal structure , mineralogy , hydrothermal circulation , nuclear chemistry , chemistry , diffraction , chemical engineering , metallurgy , biochemistry , physics , optics , engineering , catalysis
The incorporation of magnesium in the synthetic apatite has been associated with the biomineralization process and osteoporosis therapy in humans and animals. β-tricalcium phosphate (β-TCP) is one of the most common bioceramics widely applied in bone cement and implants. In this work, Ca-deficient apatite (CDA) with a theoretical 0.08 Mg/(Ca+Mg) ratio was synthesized by the rapid reaction between Ca(OH)2, MgCl2.6H2O and H3PO4 at 40°C and the resultant powder calcined at 650 °C for 10h. X-ray powder diffraction analysis (XRD), in combination with the Rietveld method (Fullprof-suite), was employed for quantitative phase analysis and structural refinement. The results of XRD indicate that magnesium can substitute for calcium into a β-TCP structure inducing a reduction of the cell parameters and the compound crystallizes in the rhombohedral R3c structure, with the following unit cell constants: a = b = 10.3560 Å, c = 37.1718 Å, and cell volume V = 3452.44. The analysis indicated that the substitution of Mg2+ on the M(4) and M(5) sites were, approximately, 2.61 and 6.97 mol%, corresponding to the Ca2.72(MgIV0.07, MgV0.21)(PO4)2 stoichiometric formula and 0.09 Mg/(Ca+Mg) ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here