
Antimicrobial Applications of Rhamnolipid Biosurfactant Produced from Achromobacter sp. (PS1) Isolate Using Lignocellulosic Hydrolysate
Author(s) -
Sam Joy,
Shashi Sharma
Publication year - 2021
Publication title -
letters in applied nanobioscience
Language(s) - English
Resource type - Journals
ISSN - 2284-6808
DOI - 10.33263/lianbs114.42634271
Subject(s) - rhamnolipid , hydrolysate , antimicrobial , chemistry , food science , bacteria , microbiology and biotechnology , hydrolysis , biology , pseudomonas aeruginosa , biochemistry , organic chemistry , genetics
Heterogeneous mixture of partially purified rhamnolipid (RL) produced from Achromobacter sp. (PS1) using lignocellulosic rice straw (RS) sugar hydrolysate medium revealed six different congeners- Rha- C10-C10, Rha-C8-C10/Rha-C10-C8, Rha- C12-C10 / Rha- C10-C12, referring mono-rhamnolipids amounting to total 68.23 % and Rha-Rha-C10-C10, Rha-Rha-C8-C10/Rha-Rha-C10-C8, Rha-Rha-C10-C12/Rha-Rha-C12-C10, referring di-rhamnolipids amounting to 31.73 %, with Mono to Di- RL in the ratio of 2.1:1. This mixture's antimicrobial action containing more mono-rhamnolipids analyzed using broth macro-dilution method exhibited a broad-spectrum antibacterial activity showing ≥ 90 % growth inhibition of both Gram-positive and Gram-negative pathogenic bacteria at MIC ranging from 1.25 mg/mL to 10 mg/mL of total rhamnolipids. This might be due to the more hydrophobic character of mono-rhamnolipids containing a single rhamnosyl group and showing high surface activities. On the other hand, the non-antifungal activity may be attributed to the lower percentage of di-rhamnolipids in the partially purified mixture.