
Boosted Electronic, NLO and Absorption Characteristics for Quercetin and Taxifolin: Comparative Experimental and DFT Studies
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac126.78867902
Subject(s) - taxifolin , quercetin , homo/lumo , materials science , plasmon , hyperpolarizability , absorption spectroscopy , absorption (acoustics) , chemistry , photochemistry , computational chemistry , molecule , optoelectronics , organic chemistry , physics , optics , polarizability , antioxidant , composite material
In the present study, a considerable, reproducible, and eco-friendly biological synthesis of Ag nanoparticles using Mangifera indica leaf extract as a reductant is documented. The spectroscopic characteristics of synthesized Ag nanoparticles are described by both UV-Vis and FT-IR techniques. The bandgap offsets, reactivity, and NLO properties for two flavonoids, quercetin, and taxifolin, are examined using the DFT approach. Also, a detailed comparative analysis for HOMO-LUMO interactions among quercetin and taxifolin is discussed. Results show that quercetin and taxifolin possess dipole moment (DM=4.79, 3.99 Debye) and bandgap offset (2.59, 2.98 eV). Both molecules are promising candidates as window layers for solar cells and memory switch devices. In addition, hyperpolarizability calculations show that quercetin NLO response is higher than taxifolin, which sets a revolutionary recall for NLO manufacture upgrade. Moreover, NBO and UV-Vis absorption characteristics are reported as well.