
DFT Examination of Electronic and Structural Features of Favipiravir for Iron Chelation
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac124.50815088
Subject(s) - chelation , computational chemistry , chemistry , density functional theory , chemical physics , inorganic chemistry
Density functional theory calculations were performed to examine electronic and structural features of favipiravir (Fav) for iron (Fe) chelation. Fav was well known for the possible medication of COVID-19; however, its mechanism of action has still been a challenging issue. Therefore, this work was done to provide information regarding the possible action of Fav for participating in the Fe chelation process. To this aim, various types of molecular and atomic descriptors were obtained to discuss the topic of this work. Obtained values of energies indicated different levels of stability for pure Fav compounds, in which such variations were also found for FavFe complexes. Molecular orbital-related features showed a different tendency to contribute to reactions for both pure and complex Fav models, in which changes of the energy levels of molecular orbitals raise the detection function of Fe for Fav compounds. Atomic-scale features also indicated direct and indirect roles of atomic sites for formations of FavFe complex models. As a consequence, the idea of Fe chelation by Fav compound was affirmed regarding the obtained results with providing detailed information for investigating the mechanism of action of Fav in treatment of COVID-19.