
Using Volumetric Method the Study of Molecular Interactions of NSAID (DP) in Water and Water + 1M Urea at Different Temperatures
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac123.39563965
Subject(s) - molar , molar volume , aqueous solution , chemistry , limiting , solvent , apparent molar property , volume (thermodynamics) , urea , thermodynamics , partial molar property , organic chemistry , medicine , mechanical engineering , physics , dentistry , engineering
Understanding possible interactions of drugs and the factors that command such interactions could be helpful to control their disadvantageous effects upon human health. In this study, volumetric properties for the solution of diclofenac potassium (DP), a non-steroidal anti-inflammatory drug (NSAID), were investigated for the first time to look into its molecular interactions at four different temperatures varying from 298.15 K to 313.15 K at 5 K intervals in water as well as aqueous hydrotropic agent urea (1M) solutions. Experimental density data obtained using a pycnometer have been taken to estimate apparent molar properties, i.e., limiting apparent molar volume (〖V_ɸ〗^0), apparent molar volume (V_ɸ), limiting apparent molar expansibility (〖E_ɸ〗^0) and apparent molar expansibility (E_ɸ). The results obtained were discussed in terms of solute-solvent and solute-solute interactions in the studied systems. The obtained results from volumetric data were explored in terms of the existence of solute-solvent interactions in aqueous systems of drug solutions.