z-logo
open-access-imgOpen Access
Characterization of Flowering Genes of Arabidopsis thaliana for Mirror Repeats
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac123.28522861
Subject(s) - genome , gene , biology , genetics , arabidopsis thaliana , dna , arabidopsis , computational biology , inverted repeat , repeated sequence , direct repeat , dna sequencing , tandem repeat , mutant
A variety of simple DNA repeats are enriched in the eukaryotic genomes. Recent studies have proven their importance in understanding genome organization and function, especially how genomes evolve using them as mutational hotspots during DNA replication. Mirror repeat sequences, the most underrated subset of this class of repeats, are now gaining importance because of their probable involvement in developing several genetic diseases in humans. These repeats typically adopt H-DNA conformations in both in-vitro and in-vivo conditions. On the other end, plants were still not analyzed for their presence or distribution and whether they are responsible for causing diseases in them or not. The present study aims to extract mirror repeats in the flowering genes of Arabidopsis thaliana. To this end, we have deployed FPCB (FASTA-PARALLEL COMPLEMENT-BLAST), an efficacious and quick method to extract perfect and degenerate mirror repeat sequences through pattern matching of alignments with user-defined algorithmic parameters. All the analyzed genes were reported to have quite high densities of mirror sequences. A total of 93 unique mirror repeats of significant lengths were extracted in the analyzed genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here