
Development and Performance analysis of Novel Cast AA7076-Graphene Amine-Carbon Fiber Hybrid Nanocomposites for Structural Applications
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac122.14801489
Subject(s) - materials science , composite material , ultimate tensile strength , nanocomposite , composite number , graphene , scanning electron microscope , casting , tribology , nanotechnology
Lightweight aluminum metal matrix nanocomposites play an important role in aerospace, military, automotive, electricity, and structural applications due to their improved mechanical, physical, and tribological properties. The hybrid nanocomposites were made using a motorized stir casting technique to achieve the desired mechanical properties. The composites were made using a mixture of graphene amine and carbon fibers in various weight proportions. The hybrid nanocomposites were created by varying the weight percentage (wt.%) of reinforcements in the AA7076 base matrix, such as 0.5wt % carbon fiber (micro filler) and 0.5wt % graphene (nanofiller). X-Ray Diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the homogeneous distribution of the fabricated hybrid composite. The mechanical properties of the hybrid composites were assessed using hardness and tensile measures. The composite with 1wt. percent reinforcements had a 50 percent increase in hardness and a 42 percent increase in tensile strength as compared to the base AA7076 matrix content. The wear tests were conducted using a pin-on-disc tribo tester, and the results showed that the hybrid composite (1wt.%) outperformed the AA7076 matrix material in terms of wear resistance.