z-logo
open-access-imgOpen Access
Synthesis and Spectroscopic Analysis of Au-Ag Alloy Nanoparticles with Different Composition of Au and Ag
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac121.377390
Subject(s) - alloy , bimetallic strip , nanoparticle , materials science , scanning electron microscope , spectroscopy , ethylene glycol , analytical chemistry (journal) , absorption spectroscopy , energy dispersive x ray spectroscopy , fluorescence spectroscopy , chemical engineering , nuclear chemistry , nanotechnology , fluorescence , chemistry , metallurgy , composite material , metal , organic chemistry , physics , engineering , quantum mechanics
Au-Ag bimetallic alloy nanoparticles, having an average size from 35 to 25 nm, were successfully synthesized (using chemical reduction process) from AuCl3 and AgNO3. Ethylene glycol was used as a solvent and polyaniline (PANI) as a capping agent. Au-Ag alloy nanoparticles, with different proportions among Au and Ag, were synthesized and characterized by various spectroscopic techniques. The steady-state uorescence spectroscopy, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) data revealed the formation of alloy nanoparticles of various compositions, which agrees with the absorption data obtained by UV-Visible spectroscopy. Ag was found to be acting as a quencher for emission radiations, as evidenced by fluorescence spectroscopy. XRD data pointed out the crystalline structure of alloy nanoparticles. Variation in Au and Ag's atomic composition in Au-Ag was confirmed by energy dispersive spectroscopy (EDS). Scanning Electron Microscopy (SEM) was applied to study the morphology of the bimetallic alloy nanoparticles. Interestingly, the size of nanoparticles decreases with a decrease in Au's composition in Au-Ag alloy nanoparticles. Maximum values of molar absorptivity were recorded by Au-Ag alloy nanoparticles with ratio 1:3, which indicates that at ratio 1:3 of Au and Ag in Au-Ag alloy nanoparticles, the size of the nanoparticles is minimum with maximum surface area.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here