z-logo
open-access-imgOpen Access
Description, Kinetic and Equilibrium Studies of the Adsorption of Carbon Dioxide in Mesoporous Iron Oxide Nanospheres
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac121.10221038
Subject(s) - adsorption , mesoporous material , chemical engineering , carbon dioxide , langmuir , specific surface area , bet theory , iron oxide , particle size , oxide , volume (thermodynamics) , porosity , materials science , chemistry , mineralogy , organic chemistry , thermodynamics , catalysis , physics , engineering
Mesoporous iron oxide nanospheres (MINs) have been successfully synthesized and have proven to be high-efficiency adsorbents. The morphology of the MINs is very uniform in spherical form, with an average particle size of 23-27 nm in the diameter range. MINs content has a fairly high BET surface area of 188.25 m2g−1 and a total volume of 0.14 cm3g−1 pores. Thus, seams were seen as potential CO2 sequestration reservoirs to reduce greenhouse gas emissions. The CO2 adsorption was favorable at low temperature and dry MINs conditions. However, MINs have a high adsorption capacity of 0.15 mmol/g. The CO2 adsorption isotherm of all coal samples according to the IUPAC classification of adsorption isotherms fits category I, which most likely explains adsorption confined to a few layers of molecules (micropores and mesopores). The balancing assessment using Langmuir, Henry, Dubbin, Temkin, Toth, Harkins-Jura, Elovich, Redlich-Peterson, and Josene model provided the best fit for any experimental adsorption data that predict heterogeneous surface properties of MINs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here