
DFT Calculations and In silico Study of Chlorogenic, Ellagic and Quisqualic acids as Potential Inhibitors of SARS-CoV-2 Main Protease Mpro
Author(s) -
Siyamak Shahab,
Sadegh Kaviani,
Masoome Sheikhi,
Hora Alhosseini Almodarresiyeh,
Sultan Al Saud
Publication year - 2021
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac121.061073
Subject(s) - chemistry , ellagic acid , galangin , protease , docking (animal) , autodock , stereochemistry , combinatorial chemistry , in silico , computational chemistry , biochemistry , enzyme , kaempferol , polyphenol , antioxidant , medicine , nursing , gene , quercetin
In the present work, at first, density functional theory calculations were performed to investigate the molecular structure of the Chlorogenic, Ellagic, and Quisqualic acids by CAM-B3LYP/MidiX level of theory. A detail of quantum molecular descriptors of the title compounds such as ionization potential (IP) and Electron Affinities (EA), Hardness (η), Softness (S), Electronegativity (μ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) have been calculated. Pharmacokinetic properties of the title compounds and their bioactivity were investigated. In the following, a molecular docking study was carried out to screen for an effective available compound that may work as a strong inhibitor for the SARS-CoV-2 main protease Mpro. The binding energy between SARS-CoV-2 main protease Mpro and title organic acids showed a good binding affinity. Therefore, the Chlorogenic, Ellagic, and Quisqualic acids can be used for potential application against the SARS-CoV-2 main protease Mpro.