z-logo
open-access-imgOpen Access
Eriobotrya japonica Lindl. Kernels: Kinetics of Thermal Degradation under Inert Atmosphere Using Model-Free and Fitting Methods
Publication year - 2020
Publication title -
biointerface research in applied chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.216
H-Index - 11
ISSN - 2069-5837
DOI - 10.33263/briac114.1135711379
Subject(s) - activation energy , thermogravimetric analysis , pyrolysis , eriobotrya , thermal decomposition , decomposition , degradation (telecommunications) , atmospheric temperature range , kinetics , materials science , inert gas , cellulose , chemical process of decomposition , chemistry , kinetic energy , analytical chemistry (journal) , nuclear chemistry , japonica , thermodynamics , organic chemistry , botany , telecommunications , physics , quantum mechanics , computer science , biology
A kinetic study of the pyrolysis process of raw Eriobotrya japonica Lindl. Kernels (RLK) was investigated using a thermogravimetric analyzer. The weight loss was measured in a nitrogen atmosphere. The samples were heated over a range of temperature from 298 K to 873 K with four different heating rates of 5, 10, 15, 20 K min-1. Mass loss (TGA) and derivative mass loss (DTG) measurements indicate that the increase in heating rate has no noticeable effect on the thermal degradation of the RLK. The results obtained from the thermal decomposition process indicate that there are three main stages such as dehydration, active, and passive pyrolysis. TGA curves indicate that active pyrolysis of RLK is between 160 and 450 °C. In this interval, a shoulder followed by a peak exists on the DTG plots. The shoulder corresponds to the decomposition of hemicelluloses, the first peak to that of cellulose. Lignin decomposes through all temperature range. The kinetic parameters such as activation energy and pre-exponential factor were obtained for two degradation steps by isoconversional model-free methods proposed by FWO, KAS, Kissinger, Tang, MKN, and FR, with degradation mode being: f(α)=(1-α)n with n = 1 for FR and g(α)=-Ln(1- α) for the other methods. The activation energy and pre-exponential factor obtained by the Kissinger method are 173 kJ/mol and 1.9×1016 min-1. While for free model methods, the average kinetic parameters calculated are 172-248 kJ.mol-1 and 5,30×1020 for integral methods (FWO, KAS, Tang and MKN) and 190-271 kJ.mol-1 and 1.77×1022 min-1 for differential Fr method. The activation energy decreases in the final stages of the process. The energy required for hemicellulose degradation is lower than that of cellulose. The most probable reaction functions have thus been determined for these two stages by Coats-Redfern and Criado method, leading to greatly improved calculation performance over the entire conversion range. The reaction, second-order F2, describes the pyrolysis reaction models of RLK. With the Arrhenius parameters obtained from the fitting model of CR, we attempt to reconstruct the temperature-dependent mass conversion curves and have resulted in generally acceptable results. Based on the Arrhenius parameter values obtained by Kissinger equation, the changes in entropy, enthalpy and Gibbs free energy, and lifetime predictions have been estimated concerning the thermal degradation processes of RLK.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here