
Transforming activities of the NUP98-KMT2A fusion gene associated with myelodysplasia and acute myeloid leukemia
Author(s) -
James N. Fisher,
Angeliki Thanasopoulou,
Sabine Juge,
Alexandar Tzankov,
Frederik Otzen Bagger,
M. Mendez,
Antoine H.F.M. Peters,
Juerg Schwaller
Publication year - 2019
Publication title -
haematologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.782
H-Index - 142
eISSN - 1592-8721
pISSN - 0390-6078
DOI - 10.3324/haematol.2019.219188
Subject(s) - biology , cancer research , myeloid , haematopoiesis , bone marrow , leukemia , fusion gene , myeloid leukemia , cell cycle , immunology , stem cell , cell , microbiology and biotechnology , gene , genetics
Inv(11)(p15q23), found in myelodysplastic syndromes and acute myeloid leukemia, leads to expression of a fusion protein consisting of the N-terminal of nucleoporin 98 (NUP98) and the majority of the lysine methyltransferase 2A (KMT2A). To explore the transforming potential of this fusion we established inducible iNUP98-KMT2A transgenic mice. After a median latency of 80 weeks, over 90% of these mice developed signs of disease, with anemia and reduced bone marrow cellularity, increased white blood cell numbers, extramedullary hematopoiesis, and multilineage dysplasia. Additionally, induction of iNUP98-KMT2A led to elevated lineage marker-negative Sca-1 + c-Kit + cell numbers in the bone marrow, which outcompeted wildtype cells in repopulation assays. Six iNUP98-KMT2A mice developed transplantable acute myeloid leukemia with leukemic blasts infiltrating multiple organs. Notably, as reported for patients, iNUP98-KMT2A leukemic blasts did not express increased levels of the HoxA-B-C gene cluster, and in contrast to KMT2A-AF9 leukemic cells, the cells were resistant to pharmacological targeting of menin and BET family proteins by MI-2-2 or JQ1, respectively. Expression of iNUP98-KMT2A in mouse embryonic fibroblasts led to an accumulation of cells in G1 phase, and abrogated replicative senescence. In bone marrow-derived hematopoietic progenitors, iNUP98-KMT2A expression similarly resulted in increased cell numbers in the G1 phase of the cell cycle, with aberrant gene expression of Sirt1 , Tert , Rbl2 , Twist1 , Vim , and Prkcd , mimicking that seen in mouse embryonic fibroblasts. In summary, we demonstrate that iNUP98-KMT2A has in vivo transforming activity and interferes with cell cycle progression rather than primarily blocking differentiation.