z-logo
open-access-imgOpen Access
Comparison of 2507 Duplex and 28 % Cr- Austenitic Stainless Steel Corrosion Behavior for High Pressure and High Temperature (HPHT) in Sour Service Condition with C-ring Experiment
Author(s) -
Harris Prabowo,
Badrul Munir,
Yudha Pratesa,
Johny Wahyuadi Soedarsono
Publication year - 2021
Publication title -
periodica polytechnica. mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.259
H-Index - 16
eISSN - 1587-379X
pISSN - 0324-6051
DOI - 10.3311/ppme.17598
Subject(s) - materials science , austenite , metallurgy , pitting corrosion , austenitic stainless steel , corrosion , cracking , duplex (building) , composite material , microstructure , dna , biology , genetics
The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here