
Damage Effect of Terrorist Attack Explosion-induced Shock Wave in a Double-deck Island Platform Metro Station
Author(s) -
Zihan Liu,
Nan Jiang,
Chuanbo Zhou,
Lin Ji,
Xuedong Luo
Publication year - 2020
Publication title -
periodica polytechnica. civil engineering/periodica polytechnica. civil engineering (online)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.406
H-Index - 19
eISSN - 1587-3773
pISSN - 0553-6626
DOI - 10.3311/ppci.16929
Subject(s) - overpressure , explosive material , shock wave , deck , shock (circulatory) , structural engineering , shock response spectrum , computer simulation , engineering , underwater explosion , aerospace engineering , acceleration , simulation , physics , geography , medicine , archaeology , classical mechanics , thermodynamics
The objective of this research was to reasonably assess the damage to people and station structures caused by terrorist attack explosion at metro stations, taking the Liyuan station of Wuhan metro which adopts double-deck island platform as an typical example. The TNT explosion process inside the metro station was calculated and analyzed using the dynamic finite element numerical simulation software LS-DYNA. First, the peak overpressure curve and the positive pressure time curve of the shock wave of explosive under the condition of confined space in the metro station were obtained. Then, through the comparison and analysis of the theoretical formulas of explosive shock wave propagation characteristics, the accuracy and reliability of numerical calculation methods and model parameters were verified. At last, combining with the overpressure criterion of shock wave in explosive air, the distribution characteristics of the casualties in the metro station under the explosion shock wave are analyzed, and the dynamic response and damage effect of the pillar structure of the metro station under the explosion shock wave are studied.