
Prof. Comparing H2 and H∞ Algorithms for Optimum Design of Tuned Mass Dampers under Near-Fault and Far-Fault Earthquake Motions
Author(s) -
A. Kaveh,
Mazyar Fahimi Fazam,
Rasool Maroofiazar
Publication year - 2020
Publication title -
periodica polytechnica. civil engineering/periodica polytechnica. civil engineering (online)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.406
H-Index - 19
eISSN - 1587-3773
pISSN - 0553-6626
DOI - 10.3311/ppci.16389
Subject(s) - tuned mass damper , structural engineering , directivity , robustness (evolution) , damper , engineering , computer science , algorithm , telecommunications , biochemistry , chemistry , antenna (radio) , gene
In this study, the robust optimum design of Tuned Mass Damper (TMD) is established. The H2 and H∞ norm of roof displacement transfer function are implemented and compared as the objective functions under Near-Fault (NF) and Far-Fault (FF) earthquake motions. Additionally, the consequences of different characteristics of NF ground motions such as forward-directivity and fling-step are investigated on the behavior of a benchmark 10-story controlled structure. The Colliding Bodies Optimization (CBO) is employed as an optimization technique to calculate the optimum parameters of the TMDs. The resulting statistical assessment shows that the H∞ objective function is rather superior to H2 objective function for optimum design of TMDs under NF and FF earthquake excitations. Finally, the robustness of the designed TMDs is evaluated under a large set of natural ground motions.