
Speed Controller of Three Phase Induction Motor Using Sliding Mode Controller
Publication year - 2019
Publication title -
al-maǧallaẗ al-ʻirāqiyyaẗ li-handasaẗ al-ḥāsibāt wa-al-ittiṣālāt wa-al-sayṭaraẗ wa-al-naẓm
Language(s) - English
Resource type - Journals
eISSN - 2617-3352
pISSN - 1811-9212
DOI - 10.33103/uot.ijccce.19.1.7
Subject(s) - control theory (sociology) , stator , induction motor , controller (irrigation) , matlab , pid controller , pulse width modulation , voltage , sliding mode control , open loop controller , vector control , three phase , computer science , engineering , control engineering , physics , control (management) , mechanical engineering , temperature control , agronomy , electrical engineering , nonlinear system , artificial intelligence , quantum mechanics , biology , operating system , closed loop
A Sliding Mode Control (SMC) with integral surface is employed to control the speed of Three-Phase Induction Motor in this paper. The strategy used is a modified field oriented control to control the IM drive system. The SMC is used to calculate the frequency required for generating three phase voltage of Space vVector Pulse Width Modulation (SVPWM) invertor. When the SMC is used with current controller, the quadratic component of stator current is estimated by the controller. Instead of using current controller, this paper proposed estimating the frequency of stator voltage whereas the slip speed is representing a function of the quadratic current. The simulation results of using the SMC showed that a good dynamic response can be obtained under load disturbances as compared with the classical PI controller; the complete mathematical model of the system is described and simulated in MATLAB/SIMULINK.