
Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung
Author(s) -
Sahar Sahar
Publication year - 2020
Publication title -
indonesian journal of data and science
Language(s) - English
Resource type - Journals
ISSN - 2715-9930
DOI - 10.33096/ijodas.v1i3.20
Subject(s) - gynecology , medicine , mathematics
Di Indonesia telah terjadi pergeseran kejadian penyakit jantung dan pembuluh darah dari urutan ke-l0 tahun 1980 menjadi urutan ke-8 tahun 1986. Sedangkan penyebab kematian tetap menduduki peringkat ke-3. Dalam proses pengklasifikasian ini untuk mengetahui apakah termaksud penyakit jantung atau non penyakit jantung dengan mengunakan rumus dari metode K-Nearest Neighbor dan Naive Bayes Classifier yang menggunakan library scikit learn. Dalam proses penelitian ini kita melakukan perhitungan hasil nilai performa yang terdiri dari akurasi, presisi, recall dan f-measure pada dataset penyakit jantung. Menggunakan metode klasifikasi yg memiliki hasil uji performa tertinggi/terbaik.
Berdasarkan hasil pengujian, didapatkan tingkat akurasi pada metode K-Nearest Neighbor sebesar 67%, presisi 65%, recall 73%, dan f-measure 96% pada nilai K=250 dan metode jarak Manhattan, tingkat akurasi pada metode jarak Euclidean sebesar 65%, presisi 65%, recall 69%, dan f-measure 67% pada nilai K=250 sedangkan pada metode Naïve Bayes Classifier tingkat akurasi yang didapatkan sebesar 58%, presisi 90%, recall 55% , dan f-measure 68%. Performa metode klasifikasi terbaik pada dataset Penyakit jantung yaitu metode KNN (K-Nearest Neighbor).