
استعمال بعض الطرائق الحصينة في معالجة مشكلة التعدد الخطي
Author(s) -
غفران اسماعيل كمال,
سيف الامام سعدي خزعل
Publication year - 2019
Publication title -
mağallaẗ al-ʿulūm al-iqtiṣādiyyaẗ wa-al-idāriyyaẗ
Language(s) - Arabic
Resource type - Journals
eISSN - 2518-5764
pISSN - 2227-703X
DOI - 10.33095/jeas.v25i112.1676
Subject(s) - computer science
يعد أنموذج الانحدار الخطي المتعدد من نماذج الانحدار المهمة التي اجتذبت العديد من الباحثين في مجالات مختلفة منها الرياضيات التطبيقية والاعمال والطب والعلوم الاجتماعية , ان نماذج الانحدار الخطية التي تتضمن عدد كبير من المتغيرات التوضيحية تكون ذات اداء ضعيف بسبب كبر التباين فضلا عن ذلك تؤدي الى استنتاجات غير دقيقة , ان احدى المشاكل المهمة في تحليل الانحدار مشكلة تعدد العلاقة الخطية حيث تعتبر واحده من اهم المشاكل التي اصبحت معروفة لدى العديد من الباحثين وكذلك تأثيراتها على أنموذج الانحدار الخطي المتعدد الى جانب تعدد العلاقة الخطية مشكلة القيم الشاذة في البيانات التي تعتبر احدى الصعوبات في بناء أنموذج الانحدار , مما يؤدي الى تغيرات عكسية عند اتخاذ الانحدار الخطي كأساس لأجراء اختبارات الفروض .
نستعرض في هذا البحث بعض الطرائق الحصينة لتقدير معلمات أنموذج الانحدار الخطي المتعدد وهي طريقة انحدار الحرف بالاعتماد على مقدر المربعات الصغرى المشذبة (Ridge-LTS) وطريقة (Liu) بالاعتماد على مقدر المربعات الصغرى المشذبة (, (Liu-LTS ومن خلال استخدام المحاكاة تمت اجراء المقارنة بين هاتين الطريقتين وفق معيار المقارنة متوسط مربعات الخطأ (MSE) , واتضح من خلال المقارنة ان طريقة ((Liu-LTS هي الافضل في تقدير معلمات أنموذج الانحدار الخطي المتعدد .