z-logo
open-access-imgOpen Access
التحليل المميز والانحدار اللوجستي بوجود مشكلة التعدد الخطي (دراسة تطبيقية على مرض فقر الدم)
Author(s) -
رباب عبد الرضا صالح البكري,
محمد شاكر محمود
Publication year - 2017
Publication title -
mağallaẗ al-ʿulūm al-iqtiṣādiyyaẗ wa-al-idāriyyaẗ
Language(s) - Arabic
Resource type - Journals
eISSN - 2518-5764
pISSN - 2227-703X
DOI - 10.33095/jeas.v23i99.261
Subject(s) - computer science
المستخلص    تعد طريقة الانحدار اللوجستي الثنائي Binary logistic regression والدالة المميزة الخطية Linear discriminant function من اهم الطرائق الاحصائية المستخدمة في التصنيف والتنبؤ، عندما تكون البيانات من النوع الثنائي (0،1) فانه لا يمكن استخدام الانحدار الاعتيادي فلذلك نلجأ الى الانحدار اللوجستي الثنائي والدالة المميزة الخطية في حالة وجود مجموعتين، وفي حالة وجود مشكلة التعدد الخطي Multicollinearity بين البيانات (ان البيانات يوجد فيها ارتباطات عالية بين المتغيرات) اصبح عدم الامكان في استخدام الانحدار اللوجستي والدالة المميزة الخطية، ولحل هذه المشكلة نلجأ الى طريقة انحدار المربعات الصغرى الجزئية Partial least square regression لحل مشكلة التعدد الخطي. وقد جرى في هذه البحث المقارنة بين الانحدار اللوجستي الثنائي binary logistic regression والدالة المميزة الخطية linear discriminant function عن طريق خطأ التصنيف. حيث تم جمع بيانات عن مرض فقر الدم بمتغيرين هما فقر الدم الحاد بالرمز (0)، وفقر الدم المزمن بالرمز (1) وبعدة متغيرات حول المرض. جمعت البيانات من عدة مستشفيات عراقية، وجمعت عينة من المرضى الراقدين في المستشفى وحالات سابقة رقدت في المستشفى بعينة قدرها (140) مريضاً مصاباً بهذا المرض. وعند اختبار البيانات وجدت ان هناك مشكلة التعدد الخطي Multicollinearity تمت معالجتها بأستعمال طريقة المربعات الصغرى الجزئية Partial least square. وتوصل البحث الى ان الدالة المميزة الخطية linear discriminant function هي أفضل في تصنيف البيانات من الانحدار اللوجستي الثنائي binary logistic regression، اذ صنفت الدالة المميزة البيانات بشكل صحيح وأكثر دقة من الانحدار اللوجستي الثنائي.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here