z-logo
open-access-imgOpen Access
استخدام أساليب السلاسل الزمنية لمعالجة الاختلافات الموسمية في الرقم القياسي لسعر المستهلك
Author(s) -
عبد اللطيف حسن شومان,
هيثم حسن ماجد
Publication year - 2013
Publication title -
mağallaẗ al-ʿulūm al-iqtiṣādiyyaẗ wa-al-idāriyyaẗ
Language(s) - Arabic
Resource type - Journals
eISSN - 2518-5764
pISSN - 2227-703X
DOI - 10.33095/jeas.v19i74.1439
Subject(s) - box–jenkins , autoregressive integrated moving average , mathematics , statistics , time series
كما هو معروف أن الرقم القياسي لسعر المستهلك (CPI) هو احد اهم  الأرقام القياسية المستخدمة لما له من مساس مباشر برفاهية الفرد والمستوى ألمعاشي له ، ومن اجل الاهتمام بحساب هذا الرقم والتعرف على المشاكل التي تعترضه فقد تم التطرق الى مشكلة وجود السلع الموسمية التامة عند حساب هذا الرقم  والتعرف على بعض الحلول الممكنة في التعامل مع هذه المشكلة، اذ استخدمت البيانات الحقيقية لمجموعة من السلع (المتضمنة سلع موسمية تامة) في حساب الرقم القياسي للسعر وباستخدام طريقة (السلة السنوية مع استخدام الاسعار السابقة في التعويض عن الاسعار المفقودة) وبالرغم من ان هذه الطريقة اعطت تعاملا ناجحاً مع مشكلة السلع الموسمية التامة الا ان اثر الموسمي يبقى مرافقاً لسلسلة الارقام القياسية الناتجة عنها.  ومن اجل ان يكون الرقم القياسي لسعر المستهلك (CPI) ملائماً لقياس التضخم واجراء المقارنات الشهرية اوالربع سنوية فلابد من الاهتمام بسلسلة الارقام القياسية لسعر المستهلك والتأكد من خلوها من التأثيرات الموسمية وهذا يتطلب اعتماد الاساليب الاحصائية المتقدمة, ومن اهم هذه الاساليب هي طرائق تحليل السلاسل الزمنية والتي تأخذ بنظر الاعتبار دراسة التغيرات الموسمية وعليه تم استخدام طريقة  Box-Jenkins  في بناء الأنموذج الخاص بالسلسلة الزمنية للارقام القياسية وكذلك اختبار هذا الانموذج باستخدام اختبار Ljung &Box كما تم اعتماد اساليب السلاسل الزمنية في التوصل الى سلسلة زمنية معدلة موسميا وتم اعتماد النموذج arima(0,1,1)(0,1,1) لتمثيل السلسلة الزمنية .    

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here