
Results of Structural Analysis of WWER-1000/320 Containment Behavior under Severe Accidents
Author(s) -
L. Liashenko,
Alexander Panchenko,
O-і Shugailo,
M. Koliada
Publication year - 2020
Publication title -
âderna ta radìacìjna bezpeka
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 5
ISSN - 2073-6231
DOI - 10.32918/nrs.2020.4(88).03
Subject(s) - containment (computer programming) , structural engineering , containment building , stress (linguistics) , tension (geology) , engineering , nuclear engineering , computer science , materials science , compression (physics) , accident management , linguistics , philosophy , composite material , programming language
The paper presents the review and evaluation of the containment prestressing system within reinforced concrete structures under seismic loads and severe accidents. Given the complex design of the containment, the detailed finite element model has been developed and used to describe real containment behavior. Containment stress and strain state was calculated by modern LIRA software. The first stage analyzed the results of WWER-1000/320 containment stress and strain state calculation under a combination of loads caused by maximum design basis accident (MDBA) and safe shutdown earthquake (SSE) and defined minimum acceptable tension of tendons. The research determines the minimum acceptable tension of tendons in the containment prestressing system, and evaluates the strength and reliability of containment structures under a combination of loads in normal operation + design-basis accident + maximum design earthquake (NO + DBA + MDE). The verification calculations have been performed using tendon tension of 780 ton-force in the cylindrical part of the containment and 760 ton-force in the containment dome.
The second stage covered the analysis of severe accident parameters (pressure and temperature) and the results of calculation. Stress and strain state in ZNPP-1 containment has been calculated, parameters (pressure and temperature) under which the containment can loss its protective and isolation functions have been identified, calculation results have been analysed and conclusions of containment structural integrity and ensuring the implementation of the design confining functions have been made. Based on the calculation results, it can be concluded that strength of the containment cylindrical part during a beyond design-basis accident cannot be ensured under parameters t (temperature) = 120°С, p (pressure) = 0.6 MPa.