
ENHANCEMENT THE HEAT TRANSFER FOR TWO-PHASE FLOW THROUGH A RECTANGULAR RIBBED VERTICAL CHANNEL
Author(s) -
Riyadh S. Al-Turaihi,
Doaa Fadhil Kareem
Publication year - 2018
Publication title -
the iraqi journal for mechanical and materials engineering/maǧallaẗ al-ʻirāqiyyaẗ li-l-handasaẗ al-mīkānīkiyyaẗ wa-handasaẗ al-mawādd
Language(s) - English
Resource type - Journals
eISSN - 2313-3783
pISSN - 1819-2076
DOI - 10.32852/iqjfmme.vol18.iss1.76
Subject(s) - heat transfer coefficient , mechanics , fluent , heat transfer , materials science , flow (mathematics) , work (physics) , thermodynamics , channel (broadcasting) , computational fluid dynamics , thermal , heat flux , airflow , phase (matter) , computer simulation , physics , engineering , telecommunications , quantum mechanics
The heat transfer coefficient and temperature distribution of two phase flow (water, air)in rectangular ribbed vertical channel was investigated experimentally and numerically inthis work for different values of water and air superficial velocities (0.0421, 0.0842, 0.1158,0.1474 and 0.1684 m/s) and (1.0964, 1.425, 1.644, 1.864 and 2.193 m/s), respectively, atconstant heat flux (120 W). The distribution of temperature along the channel wasphotographed using thermal camera and compared with images for the correspondingcontours which found numerically. The experimental results of heat transfer coefficientcompared with computational fluid dynamics model simulated by Ansys fluent 15.0. Agood agreement has been found between the experimental and numerical data, where thepercentage deviation between the experimental and the numerical results is (1% - 6% ). Theresults showed that, the local heat transfer coefficient increased by adding ribs, it alsoincreased as the velocity of the flow increased.